

FLUID PROPERTIES

Specific Heat Capacity

The term originated primarily through the work of Scottish physicist Joseph Black

Specific Heat at Constant Volume= C_V

Is defined as the Amount of Heat required to raise the unit mass of a given substance by one degree at constant volume.

Specific Heat at Constant Pressure= C_p

Is defined as the Amount of Heat required to raise the unit mass of a given substance by one degree at constant pressure.

FLUID PROPERTIES

Specific Internal Energy (u) / (J/kg K)

The energy that a substance posses because of the state of molecules in the substance.

For an ideal gas the specific internal energy - u - is a function of temperature and the change in internal energy can be expressed as

$$du = C_V dT \quad (1)$$

where

du = change in internal energy

cv = specific heat capacity for the gas in a constant volume process

dT = change in temperature

cv varies with temperature, but within a moderate temperature change the heat capacity - cv - can be regarded as constant.

FLUID PROPERTIES

Specific Enthalpy (h) / (J/kg K)

For an ideal gas the specific enthalpy - h - is function of temperature and the change in enthalpy can be expressed as

$$dh = C_p dT \quad (2)$$

where

dh = change in enthalpy

cp = specific heat capacity for the gas in a constant pressure process

cp can within a moderate temperature change be regarded as constant.

More about Specific Heat Capacities for Gases

The enthalpy in a fluid is defined as:

$$h = u + \frac{p}{\rho} \quad (3)$$

FLUID PROPERTIES

where

h = Enthalpy

u = Internal energy

p = Absolute pressure

ρ = Density

Combining (3) and the Ideal Gas Law gives:

$$h = u + R T \quad (4)$$

where

R = the individual gas constant

The change in enthalpy can be expressed by differentiating (4):

$$dh = du + R dT \quad (5)$$

Dividing (5) with dT gives:

$$(dh / dT) - (du / dT) = R \quad (6)$$

FLUID PROPERTIES

Modifying (6) with (1) and (2):

$$cp - cv = R \quad (7)$$

The difference $cp - cv$ is constant for an ideal gas.

The Ratio of Specific Heats

The Ratio of Specific Heats can be expressed as:

$$k = cp / cv \quad (8)$$

Where:

k = the ratio of specific heats

**END of
Lecture (2)**